
LING 185B Final Paper

Angela Yang

June 2024

1 Abstract

The forward-backward algorithm is an proce-
dure used to find the expected counts of rules
given weighted context-free grammar and a
sentence to parse. This algorithm is used
to learn the most plausible parses, optimize
weights, and provide ”soft counts” of rules
to expect. This algorithm is usually derived
manually to fit the needs of certain kinds of
models. This paper aims to prove that the
forward-backward algorithm can be distilled
into an instance of back-propagation on a set
of input rules.

2 Introduction

The inside-outside algorithm is a method
used to compute the expected counts of gram-
matical infixes at each position in the sen-
tence. The forward-backward algorithm is
a simpler form of the inside-outside algo-
rithm which computes the expected counts
of the infixes that are suffixes. As Eis-
ner postulates, both the inside-outside and
forward-backward algorithm can be derived
more simply by generalizing them as varia-

tions of backprop. Where Eisner has demon-
strated this with the inside-outside algo-
rithm, I will be extending the example to
forward-backward algorithm, which can be
derived from the backward algorithm (Baum,
1972).

In the field of machine learning, back-
propagation is a relatively fast algorithm used
to compute the gradient of a cost function.
It’s famously a core component of neural net-
work learning; in essence, back-propagation
allows for the cost or error of the model’s re-
sults to adjust the nodes’ weights relative to
its influence. Where we had used the EM
algorithm in Homework 2 to converge on op-
timal weights that accounted for sentences in
the language using the expected counts in the
E step, an alternative method of optimization
can be found with back-propagation.

3 Definitions and Nota-

tion

I will be largely aligning with Eisner’s nota-
tions, as my goal is to extend the concepts
analogously to the backward algorithm. So,
instead of using the typical model of Hidden

1



Markov Models directly, I’ll be drawing its
parallels in a simpler version of CFGs.

Assume a given alphabet Σ of emis-
sions (which are analogous to terminal sym-
bols in CFGs) and a disjoint finite alphabet
N of states that includes the special sym-
bol ROOT, which decomposes into the first
emission and the starting state.

A derivation T is a rooted, ordered tree
whose leaves are members of Σ and whose
non-leaf nodes are members of N . The sym-
bol w represents the sentence that we are try-
ing to find the derivation for. What Eisner
refers to as a production rule is a super-
set of a transition and state-emission pair in
the backward algorithm. In the context of
the grammar tree, a production rule would
denote a rule that results in a branch or the
last emission. Formally, we will represent this
as R which consist of all rules of the form
ROOT → A or A → wB or A → w (for
A,B ∈ N and w ∈ Σ).

A weighted context-free grammar
(WCFG) can be shown as a function G :
R → R≥0. Each rule in the grammar has
a weight. We take the product of all rules
applied to derive the weight of the particu-
lar derivation: G(T ) = Πt∈TG(Tt), where t
ranges over all internal nodes of T . If the
weight represents a probability from 0 to 1,
this is a probabilistic context-free gram-
mar (PCFG).

Lastly, there is the notation of an an-
chored nonterminal Ai or anchored rule
ROOT → Ai or Ai → wBi+1 or Ai → w,
where the superscript denotes the position in
w where the backward traversal begins.

4 The Backward Algo-

rithm

The backward algorithm returns the total
weight Z of all parses of w with grammar G.
It is a special case of the inside algorithm in a
right-branching WCFG. The pseudocode for
this algorithm is shown in Algorithm 1.

Algorithm 1 The Backward Algorithm
1: function BACKWARD(G, w)
2: initialize all β[· · · ] to 0
3: for A ∈ N do ▷ stopping rules
4: β[An] += G(A → wn)

5: for j := n− 1 downto 1 do
6: for A,B ∈ N do ▷ transition rules
7: β[Aj ] += G(A → wjB)β[Bj+1]

8: for A ∈ N do ▷ starting rules
9: β[ROOT0] += G(ROOT →

A)β[A1]
return Z := β[ROOT0]

To begin to digest this algorithm to its
core components, we begin with why Z is sig-
nificant. As previously stated, Z is the total
weight of all parses given a w and G. The
probability of each parse T , which is a par-
ticular tree structure, given w can be defined
to be equal to the following:

p(T |w) := G(T )/Z (1)

Since G(T ) can be calculated as the
product of all rule instances’ weights of a
given tree, and the backward algorithm pro-
vides Z, we can calculate the probability of a
given parse.

The three for-loops calculate the proba-
bility of the stopping rules, transition rules,

2



and starting rules respectively. Each node’s
backwards value β[Aj] contains the recur-
sive call to the backwards value of the suffix
β[Bj + 1]. One can conceptualize the inter-
leaved sums and products as a sort of Dis-
junctive Normal Form, in which a particular
parse would have rules multiplied together
when all nodes are required, and thus their
weights are ANDed together, and each parse
is a possibility in a massive OR statement, so
their weights are added together.

5 Expected Counts and

Derivatives

5.1 The Goal of Forward-
Backward

The forward-backward algorithm’s objective
is to derive the expected counts of each rule
across all parses T using the distribution
found in the previous section (1). We uti-
lized this function in Homework 2 to calculate
the E step in the Expectation Maximization
(EM) algorithm made to optimize probabil-
ities. The M step then took the expected
counts and calculated the new probabilities
based on the proportion of rules relative to
one another.

5.2 Anchored Probabilities

The forward-backward algorithm is a recur-
sive process which finds the expected counts
of rules at specific positions in w. Such rules
are called anchored rules, and are denoted

Ai where i is the position and A is the non-
terminal which generates the suffix beginning
at that position. As Eisner points out, CFGs
never use a particular constituent more than
once in a particular position so the expected
count for Ai is always either 0 or 1.

5.3 Log-Linear Distribution

There is another way to find the optimal
weights of a weighted context-free-grammar
using the gradient of log-likelihood. Starting
from equation 1, we can alternatively expand
G(R) using this definition: θR := logG(R).

p(T |w) = G(T )/Z

=
1

Z

∏
t∈T

G(Tt) =
1

Z
exp

∑
t∈T

θTt

=
1

Z
exp

∑
R∈R

θR · fR(T )

(2)

This equation might look familiar as the
dot product of the weights and feature vec-
tor is something we have encountered in our
overview of log-linear models.

Most importantly, the partial derivative
of log Z with respect to the weight vector
θ gives us the expected counts under a log-
linear distribution.

c(R) =
∂(logZ)

∂θR
(3)

This will prove useful in converting the up-
dated weights to an expected count.

3



6 Adjusting the Forward-

Backward Algorithm

6.1 Back-propagation

Let’s approach how a backward algorithm
might fit into the typical example of back-
propagation. Back-propagation is a method
in which weights in algorithmic circuit are
updated based on the quantified cost of its
results. Back-propagation can be run over
and over on the same circuit to find the local
minimum cost. The process consists of four
steps:

1. Forward Pass: This is where the input
is fed into the circuit and the output is
computed with the current weights.

2. Cost calculation: We compare the cur-
rent output to the desired output to de-
termine a cost

3. Backward Propagation: This cost is
then propagated backwards through the
weights of the circuit. At each weight,
we compute the gradient of the cost with
respect to that weight.

4. Adjustment of Weights: Using the
gradient of the error, each weight is ad-
justed in the direction that minimizes
the cost. We may use methods such as
stochastic gradient descent for this step.

In the context of the backward algorithm,
since the structure itself is the one being ad-
justed and dependent on w, we can think
of this as evaluating an algorithmic cir-
cuit where the inputs are the rule weights

G(R) : R ∈ R, the internal nodes are back-
wards values of suffixes of w also known as β
values, and the output is the total weight Z.
This circuit is traversed in topological order
and in Eisner’s analogy, represents the for-
ward pass of the back-propagation algorithm.

There are a few things that differ be-
tween our version of backprop for the back-
ward algorithm and the vanilla variant intro-
duced above. Instead of having a traditional
supervised value to compare the output Z to,
we use Z itself as the cost. Another adjust-
ment made is that Z must now be maximized,
since logZ is the likelihood of a particular
parse, and we are trying to maximize likeli-
hood. Thus, we find a local maximum and
move in the opposite direction as the typical
back-prop algorithm’s gradient.

The back-propagation step is repre-
sented by an adjoint circuit which forms
the same structure but is calculated in the
reverse direction as the algorithmic circuit.
Each node also calculates ∂Z/∂x where x is
the weight of the node in the original circuit.
Finally, we have the last step, in which the
original circuit’s nodes are adjusted based on
the adjoint circuit’s gradients.

6.2 Mathematical Lemmas

Now that we have the backward algorithm
(Algorithm 1), there are a few changes we
need to make to the forward-backward al-
gorithm utilize back-propagation and ulti-
mately calculate the expected counts. Firstly,
the we replace the weight functions with their
respective adjoint operations. The weight

4



functions are sums of products in the form:

x = y1 · y2 (4)

The respective adjoint expressions are these:

∂Z

∂y1
+=

∂Z

∂x
· y1

∂Z

∂y2
+=

∂Z

∂x
· y2

(5)

Intuitively, y1 is adjusted however much x is
adjusted, weighted on how much ”influence”
y1 has on x. We can see this pattern applied
to lines 9 and 7 in Algorithm 1 to produce
lines 6-7 and 10-11 in Algorithm 2 respec-
tively, as well as the stopping rule lines.

Lastly, we may use the expected counts
expression derived in (3) and the definition
θR := logG(R) to synthesize a new expression
which is independent of θR:

c(R) =
∂logZ

∂θR

=
∂logZ

∂Z
· ∂Z

∂G(R)
· ∂G(R)

∂θR

= (1/Z) · α[R] · G(R)

(6)

This expression can be seen in the returned
expected rule counts at the end of Algorithm
2.

7 Overview of the Re-

framed Algorithm

So here we have it! Algorithm 2 shows
the pseudocode for a version of the forward-
backward algorithm that utilizes back-

propagation. To further connect this con-
cept to Homework 2, there are some paral-
lels that can be made between the optimiza-
tion of weights with back-propagation versus
using the EM algorithm. For the E-step in
Homework 2, we used a formula customized
for Hidden Markov Models that accrued the
expected counts of each of the four kinds
of operations (start, end, transmit, emit) at
certain states to calculate expected counts.
Analogously, the last line of Algorithm 2
calculates expected counts using the gradi-
ent of the total weight with respect to the
rule weights. For the M-step, we had cal-
culated new rule probabilities using the ex-
pected counts given the originating state. In
Algorithm 2, we can see parallels in how the
adjoint operation steps update the forward
values.

Algorithm 2 The Forward-Backward Algo-
rithm
1: function FORWARD-BACKWARD(G, w)
2: Z :=BACKWARD(G, w) ▷ sets β[· · · ]
3: initialize all α[· · · ] to 0
4: α[ROOT0] += 1 ▷ sets /∂Z = 1
5: for A ∈ N do ▷ starting rules
6: α[ROOT → A] += α[ROOT0]β[A1]
7: α[A1] += α[ROOT0]G(ROOT → A)

8: for j := 1 to n− 1 do
9: for A,B ∈ N do ▷ transition rules

10: α[A → wjB] += α[Aj ]β[Bj+1]
11: α[Bj+1] += α[Aj ]G(A → wjB)

12: for A ∈ N do ▷ stopping rules
13: G(A → wn) += α[An]

14: for R ∈ R do ▷ expected rule counts
15: c(R) := α[R] · G(R)/Z

5



8 Significance

The generalization of inside-outside and
forward-backwards as back-propagation is a
hugely advantageous re-framing. In linguis-
tics, the forward-backward algorithm is usu-
ally derived manually, tailored to the con-
text of a particular problem. However, the
underlying distribution under all of these al-
gorithms is a log-linear (and therefore expo-
nential) distribution. These distributions all
have the property of the derivative with re-
spect to the weights being equivalent to a vec-
tor of expected counts.

By attacking the problem from the per-
spective of back-propagation, we can ap-
ply the automatic differentiation software al-
ready in existence to the WCFG contexts.

References

[1] Eisner, J. (2016). Inside-Outside and
Forward-Backward Algorithms Are
Just Backprop (tutorial paper). Asso-
ciation for Computational Linguistics.
https://doi.org/10.18653/v1/w16-5901

[2] Nielsen, M. A. (2015). Neu-
ral networks and deep learning.
http://neuralnetworksanddeeplearning.com,
Ch. 2

6


